Новостивысоких технологий

Oснoвы физики прeдпoлaгaют, чтo элeктрoны прaктичeски бeссмeртны. Нo нeдaвнo был прoвeдeн зaмeчaтeльный экспeримeнт, кoтoрoму удaлoсь oпрoвeргнуть этo фундaмeнтaльнoe предположение. Правда, узнав его результаты, вы наверняка обхохочетесь: пересмотренный минимальный «срок годности» электронов составил 60 000 йотталет (!) — это в пять квинтиллионов раз больше возраста нашей Вселенной. Йоттагоды
Электрон — самая легкая субатомная частица, переносящая отрицательный электрический заряд. Он не имеет известных науке составляющих, поэтому считается базовым строительным блоком Вселенной, элементарной частицей. Международная группа ученых, работающих над экспериментом Borexino в Италии, искала признаки распада электронов на более легкие частицы, но, как и ожидалось, ничего не нашла. Если бы они обнаружили, что электроны распадаются на фотоны и нейтрино — частицы с еще меньшей массой — это бы нарушило закон сохранения электрического заряда. Однако этой же команде ученых удалось сделать самое точное измерение «срока жизни» электронов. Детали этой работы появились в научном журнале Physical Review Letters. 2000 фотоумножителей детектора усиливают излученный свет. Ученые определили чувствительность детектора к фотонам, произведенным гипотетическим распадом электрона на фотон и нейтрино. Затем они искали фотонные «события» ниже этого фона с энергией порядка 256 КэВ, соответствующей половине массы покоя электрона». Во-первых, Вселенной за это время уже не станет, скорее всего. И даже если она будет — скажем, после сценария Большого Разрыва — фундаментальные свойства частиц вроде электронов, скорее всего, будут совершенно другими. Второе, и более важное, заключается в том, что новые измерения сдвинули прежнюю оценку нижней границы «продолжительности» электрона. Наблюдения, сделанные учеными Borexino (или, скорее, их отсутствие), предполагают, что поскольку мы не видели распада электронов, их срок жизни должен быть не меньше того, что предполагают новые расчеты. Шон Кэрролл, профессор кафедры физики Калифорнийского технологического института, так объяснил это в письме Gizmodo:
«Распад — это естественный процесс в физике частиц; тяжелые частицы, как правило, распадаются на более легкие. Нейтрон, предоставленный сам себе, к примеру, распадется на протон, электрон и антинейтрино в течение нескольких минут. Это такая версия распада радиоактивных ядер вроде урана в исполнении элементарных частиц. Кроме того, «барионное число» (общее число протонов плюс нейтроны минус число антипротонов плюс антинейтроны) и «лептонное число» (электроны плюс нейтрино минус их античастицы) — тоже. Перед распадом у нас есть один нейтрон, заряд которого = 0, барионное число = 1, а лептонное число = 0. После распада заряд также = (протон = +1, электрон = -1, антинейтрино = 0), барионное число = 1 (протон = 1, электрон и антинейтрино = 0) и лептонное число = (протон = 0, электрон = 1, антинейтрино = -1). Барионное и лептонное число никогда не менялись ни в одном из экспериментов — такое событие стоило бы Нобелевской премии — но в теории мы полагаем, что их изменения возможны и, возможно, происходили в ранней Вселенной. (Это могло бы помочь нам объяснить, почему в современной Вселенной больше материи, чем антиматерии)». Если бы электрический заряд не сохранился, это было бы очень и очень удивительное событие. Поэтому все думают, что электроны не распадаются». Кэрролл говорит, что частицы, которые легче электронов, электрически нейтральны: нейтрино, фотоны, глюоны, гравитоны. Если бы существовали другие легкие заряженные частицы, мы бы их обнаружили к настоящему времени. Все указывает на то, что электрону не на что распадаться. «Но искать непременно стоит! Это лотерейный билет — маловероятно, что вы что-нибудь найдете, но если найдете, то разбогатеете, — говорит Кэрролл. — К сожалению, никто ничего не нашел, но нулевые результаты — важная часть хорошей науки».

Комментирование и размещение ссылок запрещено.

Комментарии закрыты.